
ORNL/LTR-2020/40

Optimizing the Accelerated Recursive
Doubling Algorithm for Block Tridiagonal
Systems of Equations

Muktaka Joshipura
Sudip K Seal

August 7, 2020

Approved for public release.
Distribution is unlimited.

DOCUMENT AVAILABILITY
Reports produced after January 1, 1996, are generally available free via US Department of
Energy (DOE) SciTech Connect.

Website: http://www.osti.gov/scitech/

Reports produced before January 1, 1996, may be purchased by members of the public
from the following source:

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161
Telephone: 703-605-6000 (1-800-553-6847)
TDD: 703-487-4639
Fax: 703-605-6900
E-mail: info@ntis.gov
Website: http://classic.ntis.gov/

Reports are available to DOE employees, DOE contractors, Energy Technology Data Ex-
change representatives, and International Nuclear Information System representatives from the
following source:

Office of Scientific and Technical Information
PO Box 62
Oak Ridge, TN 37831
Telephone: 865-576-8401
Fax: 865-576-5728
E-mail: report@osti.gov
Website: http://www.osti.gov/contact.html

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal lia-
bility or responsibility for the accuracy, completeness, or usefulness
of any information, apparatus, product, or process disclosed, or rep-
resents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not nec-
essarily constitute or imply its endorsement, recommendation, or fa-
voring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

 http://www.osti.gov/scitech/
mailto:info@ntis.gov
http://classic.ntis.gov/
mailto:reports@osti.gov
http://www.osti.gov/contact.html

ORNL/LTR-2020/40

Computer Science and Mathematics Division

Optimizing the Accelerated Recursive Doubling Algorithm for Block Tridiagonal Systems of Equations

Muktaka Joshipura
Sudip K. Seal

Date Published: August, 2020

Prepared by
OAK RIDGE NATIONAL LABORATORY

Oak Ridge, TN 37831-6283
managed by

UT-Battelle, LLC
for the

US DEPARTMENT OF ENERGY
under contract DE-AC05-00OR22725

CONTENTS

LIST OF FIGURES . i
1. Introduction . ii

1.1 Li, Di, and Ui matrices . ii
1.2 xi and bi vectors . iii
1.3 Xi vectors and Bi matrices . iii
1.4 S i matrices . iii
1.5 Ci and Fi matrices . iv
1.6 Qi matrices . iv
1.7 Ei matrices . v
1.8 Zi matrices . vi

2. Original Algorithm . ix
2.1 Independent phase . ix
2.2 Dependent phase . ix

3. Algorithm Setup . ix
3.1 Block row assignment and indexing . ix
3.2 Shared-memory threading . x
3.3 Registers and Instructions . x

4. Optimizations . xi
4.1 Optimizations in the Independent Phase . xi

4.1.1 Ci matrix compression . xi
4.1.2 Qi matrix compression . xi
4.1.3 Q−1 compression . xii

4.2 Optimization in the Dependent Phase . xiii
4.2.1 Evaluating xi . xiii

4.3 Shared-memory parallel prefix . xiv
4.3.1 Optimizations for in-place prefix operations . xvi
4.3.2 Optimizations for out-of-place prefix operations .xviii

5. Program . xx
5.1 Independent Phase Part 1 . xx
5.2 Independent Phase Part 2 . xxi
5.3 Independent Phase Part 3 . xxii
5.4 Dependent Phase Part 1 .xxiii
5.5 Dependent Phase Part 2 .xxiii
5.6 Dependent Phase Part 3 . xxv

6. Time Complexity Analysis and Comparison . xxv
6.1 Naïve implementation . xxv

6.1.1 Independent phase . xxvi
6.1.2 Dependent Phase . xxvi

6.2 Optimized implementation .xxvii
6.2.1 Independent phase .xxvii
6.2.2 Dependent phase .xxvii

6.3 Comparison .xxvii
6.3.1 Independent Phase .xxviii
6.3.2 Dependent Phase .xxviii

2

7. Memory Complexity Analysis and Comparison .xxviii
7.1 Naïve implementation .xxviii
7.2 Optimized implementation .xxviii
7.3 Comparison .xxviii

7.3.1 Independent Phase . xxix
7.3.2 Dependent Phase . xxix

8. Shared-memory threading speedups . xxix
8.1 Independent phase . xxix
8.2 Dependent phase . xxx

9. Experiments and Results . xxx
10. Conclusions . xxxi

3

LIST OF FIGURES

1 In-place Shared-Memory Parallel Prefix . xvii
2 Out-of-place Shared-Memory Parallel Prefix . xix

i

ABSTRACT

The need to solve block tridiagonal systems with hundreds or thousands of right-hand sides for the same
block tridiagonal matrix is common in a variety of disciplines. To meet this need, the Accelerated
Recursive Doubling Algorithm was developed. After a right-hand side independent phase, the algorithm
allows for the quick, online calculation of solutions for different right-hand sides. In this work, we present
methods to optimize the Accelerated Recursive Doubling Algorithm in memory usage and computation
time in a hybrid parallelization model. The right-hand side independent phase of the naïve implementation
takes ≥ 11

3 the amount of memory required to store the tridiagonal matrix, while our implementation
reduces the fraction to ≈ 5

3 . The right-hand side dependent phase of the naïve implementation takes ≥ 6
times the amount of memory required to store the right-hand side, while our implementation reduces the
fraction to ≈ 3. The computation time for the independent phase is reduced to ≈ 2

3 times that of the naïve
implementation, while the computation time for the dependent phase is reduced to ≈ 5

9 . With increasing
numbers of shared-memory threads q on every distributed processing element, we have O(q) theoretical
speedup.

1. Introduction

A block tridiagonal system is a linear system Ax = b such that A is a block tridiagonal matrix. A block
tridiagonal matrix is a block matrix such that the only non-zero blocks are on the block diagonal or
adjacent to the main block diagonal.

To describe the dimensions of the matrix A, we define two parameters M and N. M refers to the width of
each square block. N refers to the number of block rows.

1.1 Li, Di, and Ui matrices

In order to reference specific blocks, we label each block in the block-tridiagonal matrix as either being
‘lower’ (L), ‘diagonal’ (D), or ‘upper’ (U). We distinguish the blocks on each block row by a block-row
index. Therefore, the layout of A is as follows:

A =

D1 U1 0 · · · · · · · · · 0
L2 D2 U2 0 · · · · · · 0
0 L3 D3 U3 0 · · · 0
...

. . .
. . .

. . .
. . .

. . .
...

0 · · · · · · · · · · · · LN DN

. (1)

For convenience in using block-row indices, we define L1 = UN = I.

ii

1.2 xi and bi vectors

We also section the solution vector x and the right-hand side vector b into smaller M × 1 vectors, one for
each of N block rows, laid out as follows:

x =

x1
...

xN

 b =

b1
...

bN

 . (2)

Again, for convenience in using block-row indices, we define x0 = xN+1 = 0.

1.3 Xi vectors and Bi matrices

Both the Accelerated and the non-accelerated Recursive Doubling Algorithms rely on a method of solving
for xi+1 once we have obtained a solution for xi and xi−1, presented in [1]. This is done by multiplying a
matrix Bi—determined from Li, Di and Ui—with a vector Xi—determined from xi and xi−1.

Xi and Bi were defined for 1 ≤ i ≤ N such that

Xi =

 xi

xi−1
1

 Bi =

−U−1
i Di −U−1

i Li U−1
i bi

I 0 0
0 0 1

 . (3)

We notice that the construction of Bi requires the following assumption to be made:
Assumption 1. For all 1 ≤ i ≤ N, the matrix Ui is invertible.

The property that allows us to determine xi+1 from xi and xi−1 is stated as a lemma as
Lemma 1. For all 1 ≤ i ≤ N, we have Xi+1 = BiXi.

The proof of this lemma is found in [1].

This lemma tells us that once x1 is known, we can pack x1 and x1−1 = x0 = 0 into X1, calculate X2 = B1X1,
and extract x2 from the result. We can then calculate every subsequent xi in serial, thus obtaining the
entirety of the solution vector x.

1.4 S i matrices

The property described in Lemma 1 yields the possibility of determining the value of all xi in parallel once
x1 is determined. This is used in both versions of the Recursive Doubling Algorithms. In order to do this, a
prefix product of Bi, labeled S i, is calculated, which is then multiplied with X1 to obtain Xi. This property
is presented in [1].

The prefix product S i = BiBi−1 . . . B1 is defined recursively for 1 ≤ i ≤ N as

S i =

B1 i = 1
BiS i−1 i > 1

. (4)

The property that allows Xi to be calculated from X1 using S i is stated as a theorem as

iii

Theorem 1. For all 1 ≤ i ≤ N, we have Xi+1 = S iX1.

This property follows trivially from the definition of xi in Equation 4 and the property of Bi in Lemma 1.

The method for determining x1, and by extension X1 as used in both versions of the Recursive Doubling
Algorithm is

Theorem 2. x1 = −[S 11
N]−1S 13

N and so X1 =

−[S 11
N]−1S 13

N
0
1

.
A proof for this theorem can be found in [2].

However, the use of this property relies on the assumption that
Assumption 2. S 11

N is invertible

1.5 Ci and Fi matrices

The Accelerated Recursive Doubling Algorithm presented in [2] accelerates the computation of solving for
x for multiple right-hand sides b by separating the computation dependent on b (right-hand side dependent)
and the computation independent of the right-hand side. In order to do this, Bi is separated into two
matrices, one right-hand side independent (Ci), and one right-hand side dependent (Fi).

To be precise, for all 1 ≤ i ≤ N, we decompose Bi into Ci and Fi as

Ci =

−U−1
i Di −U−1

i Li 0
I 0 0
0 0 1

 Fi =

0 0 U−1
i bi

0 0 0
0 0 0

 (5)

Ci and Fi matrices have the following properties that help simplify expressions involving their products, as
presented in [2].
Lemma 2. For 1 ≤ i ≤ N and 1 ≤ j ≤ N, we have FiF j = 0.
Lemma 3. For 1 ≤ i ≤ N and 1 ≤ j ≤ N, we have FiC j = Fi.

These lemmas are presented without proof because they can be verified trivially.

1.6 Qi matrices

In the Accelerated Recursive Doubling algorithm, S i is constructed by combining a result that only
depends on A, and a result that only depends on the right-hand side b. The result that only depends on A is
the Qi matrix, which is the prefix product of Ci matrices.

The prefix product Qi = CiCi−1 . . .C1 is defined recursively for 1 ≤ i ≤ N as

Qi =

C1 i = 1
CiQi−1 i > 1

(6)

Qi matrices have the following property that helps simplify expressions, stated as

iv

Lemma 4. For 1 ≤ i ≤ N and 1 ≤ j ≤ N, we have FiQ j = Fi.

This lemma follows trivially from the definition of Qi and the property in Lemma 3.

1.7 Ei matrices

The right-hand side dependent result that is used to construct S i in the Accelerated Recursive Doubling
Algorithm is the Ei matrix, defined recursively for 1 ≤ i ≤ N as:

Ei =

F1 i = 1
Fi + CiEi−1 i > 1

(7)

Using this formulation, we can start from E1 and determine all subsequent Ei using the recursive
formulation. This formulation of Ei is simpler but equivalent to the original formulation in [2].

A property that helps simplify expressions is
Lemma 5. For 1 ≤ i ≤ N and 1 ≤ j ≤ N, we have FiE j = 0.

Proof. We can prove this property by induction.

Let 1 ≤ i ≤ N be a valid index.

Base case: j = 1

By Lemma 2, we have
FiF1 = 0

Inductive step

Let the lemma be true for values of j up to and including k. This means that FiEk = 0. We have to prove
that FiEk+1 = 0.

Since k ≥ 1, we have k + 1 ≥ 2. So, by the definition of Ei, we have Ek+1 = Fk+1 + Ck+1Ek.

FiEk+1 = Fi(Fk+1 + Ck+1Ek) = (FiFk+1) + (FiCk+1)Ek

= 0 + FiEk (By Lemma 2 and 3)

= 0 (By the inductive hypothesis).

�

Using the value of Qi, determined during the right-hand side independent computation, and the value of Ei,
determined during the right-hand side dependent computation, we can construct the value of S i using this
property.
Theorem 3. For all 1 ≤ i ≤ N, we have Qi + Ei = S i.

Proof. We can prove this property using induction.

Base case: i = 1

v

By definition of S i, Qi and Ei, we have

S 1 = B1 Q1 = C1 E1 = F1

Therefore,
Q1 + E1 = C1 + F1 = B1 = S 1

Inductive step

Let the theorem be true for all i up to and including k. Therefore, S k = Qk + Ek. We have to prove that
S k+1 = Qk+1 + Ek+1.

By definition of Ci and Fi, we have Qk+1 = Ck+1 + Fk+1.

By definition of S i and the inductive hypothesis, we have

S k+1 = Bk+1S k = (Ck+1 + Fk+1)S k = (Ck+1 + Fk+1)(Qk + Ek).

Expanding, we get

(Ck+1 + Fk+1)(Qk + Ek) = Ck+1Qk + Ck+1Ek + Fk+1Qk + Fk+1Ek

= Qk+1 + Ck+1Ek + Fk+1 + 0

(Using Lemma 4 and Lemma 5)

Since k ≥ 1, we know that k + 1 > 1. So, we have Ek+1 = Ck+1Ek + Fk+1. Plugging in the value of Ek+1, we
get:

S k+1 = Qk+1 + Ek+1.

We have thus shown the inductive step to be true, which proves the theorem. �

1.8 Zi matrices

The original formulation of Ei allows for the calculation of all Ei in parallel. For this formulation, we must
define another kind of matrix, Zi, defined for 1 ≤ i ≤ N as:

Zi =

i∑
k=1

Q−1
i Fi. (8)

Further, we define Z0 = 0.

The existence of Zi therefore depends on the invertibility of Qk for all 1 ≤ k ≤ i. In order to get the most
minimal set of assumptions required to ensure this property, we investigated the conditions in which Qi are
invertible. We discovered the following property.

Lemma 6. For 1 ≤ i ≤ N, the matrix Qi is invertible if and only if C1, . . . ,Ci are invertible.

vi

Proof. By the properties of the determinant and the definition of Qi given in Equation 6, we have

det Qi =

i∏
k=1

det Ci (9)

Part 1: C1, . . . ,Ci are invertible =⇒ Qi is invertible

If C1, . . . ,Ci are invertible, then det C1, . . . , det Ci are non-zero. This means that the product of the
determinants is also nonzero. Therefore, by Equation (9), we know that det Qi , 0, and so Qi is invertible.

Part 2: Not all of C1, . . . ,Ci are invertible =⇒ Qi is not invertible

Let C j ∈ {C1, . . . ,Ci} such that it is a non-invertible matrix. Then, det C j = 0. By Equation (9), we know
that det Qi = 0, and so Qi is not invertible. �

Since the invertibility of Qi matrices is conditional on the invertibility of Ci matrices, we investigated the
invertibility of Ci matrices. We discovered the following property.

Lemma 7. Given that Ui is invertible, for 1 ≤ i ≤ N, the matrix Ci is invertible if and only if Li is
invertible.

Proof.

Part 1: Li is invertible =⇒ Ci is invertible

A matrix is invertible if and only its inverse exists. Let Li be invertible. Therefore L−1 exists and so does
the matrix

D =

 0 I 0
−L−1

i Ui −L−1Di 0
0 0 1

 .

Now, we have

DCi =

 0 I 0
−L−1

i Ui −L−1Di 0
0 0 1

−U−1

i Di −U−1
i Li 0

I 0 0
0 0 1

 = I

Therefore D is the inverse of Ci and Ci is invertible.

Part 2: Li is not invertible =⇒ Ci is not invertible

A matrix K is invertible if and only if there are no non-zero vectors y such that Ky = 0. Since Li is not
invertible, there is at least one non-zero vector y such that Liy = 0.

Let Y =

0y
0

.
Since y , 0, we know that Y , 0.

vii

Then,

CiY =

−U−1
i Di −U−1

i Li 0
I 0 0
0 0 1

0y
0

 =

−U−1
i Liy
0
0

 =

00
0

Since there exists a non-zero vector Y such that CiY = 0, we know that Ci is not invertible. �

Therefore, we were able to determine that the following condition is both necessary and sufficient for the
invertibility of Qi and therefore the existence of Zi for all 1 ≤ i ≤ N:
Assumption 3. For 1 ≤ i ≤ N, the matrix Li is invertible.

Note: A method suggested in [2] to make ARDA numerically stable for the same classes of matrices for
which Cyclic Reduction is stable is to take the LU-decomposition of A, and then solve Ax = LUx = b in
two steps: First solving Ly = b, and then solve Ux = y.

This is impossible to do by the ARDA algorithm since L is lower-triangular, violating Assumption 1 U is
upper-triangular, violating Assumption 3.

The original formulation of Ei as described in [2] given in the theorem below, which also states the
equivalence of the formulations described in this work and [2].

Theorem 4. For 1 ≤ i ≤ N, the matrix Ei = QiZi−1 + Fi.

Proof.

Base case: i = 1

From Equation (7), we have
Ei = E1 = F1.

The right hand side evaluates to

QiZi−1 + Fi = Q1Z0 + F1 = 0 + F1 = F1.

Therefore, the proposition is true for i = 1.

Inductive step

Assume that Ei = QiZi−1 + Fi for i = k. We have to prove that Ek+1 = Qk+1Zk + Fk+1. From Equation (7),
we have

Ei+1 = Fi+1 + Ci+1Ei = Fi+1 + Ci+1(QiZi−1 + Fi)

= Fi+1 + Ci+1(QiZi−1 + QiQ−1
i Fi) = Fi+1 + Ci+1Qi(Zi−1 + Q−1

i Fi).

By Equation (6), we have Ci+1Qi = Qi+1, and by Equation (8) we have Zi−1 + Q−1
i Fi = Zi. Therefore, we get

Ei+1 = Qi+1Zi + Fi.

�

viii

2. Original Algorithm

The Accelerated Recursive Doubling Algorithm as described in [2] is described below for reference.

2.1 Independent phase

Algorithm 1: Independent Phase of the Non-optimized Accelerated Recursive Doubling Algorithm

1. Assign Kr = N
P block rows of A to each processor.

2. For each local block row k, compute U−1
k , and use it to calculate Ck.

3. Calculate the local prefix product of the Ck products to obtain local Qk’s.
4. Perform a prefix product of the total products across all processors.
5. Use the received prefix product to update the local prefixes to obtain global Qk’s.
6. Invert Qk to determine Q−1

k .

2.2 Dependent phase

Algorithm 2: Dependent Phase of the Non-optimized Accelerated Recursive Doubling Algorithm

1. Assign Kr = N
P block rows of b to each processor.

2. For each local block row k, use U−1
k to compute Fk.

3. For each local block row k, compute Vk = Q−1
k Fk.

4. Calculate the local prefix sum of the Vk’s to obtain local Zk’s.
5. Perform a prefix sum of the local totals across all processors.
6. Use the received prefix sum to update the local prefix sums to obtain global Zk’s.
7. Use Qk, Zk and Fk to calculate Ek.
8. Use Qk and Ek to calculate S k.
9. On the processor that is assigned the final block row N, use S N to calculate x1, and broadcast x1 to

all processors.
10. Use x1 to construct X1.
11. Use S k and X1 to determine Xk, and thus determine xk.

3. Algorithm Setup

3.1 Block row assignment and indexing

The N block rows are distributed between the P distributed processing elements evenly. The number of
block rows assigned to a given processing element r is Kr ≈

N
P . Block rows can be indexed in two ways:

• Global index: Represented by i, this is the row index of the block row in A. The global index follows
1-based indexing.

• Local index: Represented by k, this is the index of the block row among the block rows assigned to
the distributed processing element. The local index follows 0-based indexing.

ix

3.2 Shared-memory threading

The highly parallelizable nature of the Accelerated Recursive Doubling algorithm lends to the possibility
of using shared-memory threads in conjunction with the distributed-memory algorithm described in [2].

We consider q shared-memory threads running on every distributed processing element. The Kr block rows
assigned to the distributed processing element are sectioned evenly between the threads. The thread t is
responsible for block rows with local indexes tst ≤ k < tet.

3.3 Registers and Instructions

To increase the efficiency of the algorithm, the strategy chosen was to represent the algorithm in terms of
atomic operations similar to those found in an assembly language. Operations like inverting, multiplying,
and adding matrices become the ‘instructions’, while memory blocks of various sizes are considered to be
‘registers’. Memory is optimized by reducing the number of ‘registers’ required, while computation is
optimized by reducing the number or cost of the ‘instructions’ in the program.

In this implementation, memory is assigned once when the matrix A is input, and freed once the solution to
the right-hand side is output. All memory is contiguous, where consecutive registers have consecutive
addresses in memory.

The memory is laid out with the following registers in order

1. Full block registers (size M2Kr each): R0,R1,R2,R3,R4

• R0
k refers to the k-th block of size M2 in R0.

• R01 refers to the register formed by combining registers R0 and R1 end-to-end.

• R01
k refers to the k-th block of size 2M2 in R01, interpreted as a matrix of dimensions M × 2M.

• R01
k [0] refers to the 0-th block of size M × M in R01

k .

• R0
k , R1

k , R2
k are assumed to be initialized with the appropriate Li, Di, and Ui respectively, at the

beginning of the independent phase execution.

2. Receive register (size 4M2): Rr.

3. Thread registers (size 4M2q each): Rt0,Rt1

• Rt0
t refers to the t-th block of size 4M2 in Rt0.

• Rt0
v0 refers to the first block of size 2M in Rt0.

• Rt0
v1 refers to the block of size M immediately after Rt0

v0.

4. Vector register (size MKr each): Rv0,Rv1,Rv2.

• RZ refers to the register formed by combining registers Rv0 and Rv1 end-to-end.

• Rv0 is assumed to be initialized with the appropriate bi at the beginning of every dependent
phase execution.

x

4. Optimizations

In this work, we present a large improvement in time and memory complexity of the algorithm. In order to
do this, we exploit the structure and properties of the intermediate matrices and vectors calculated. We also
present a method to efficiently perform parallel prefixes for the requirements of this algorithm in a
shared-memory paradigm.

4.1 Optimizations in the Independent Phase

4.1.1 Ci matrix compression

A Ci matrix is determined from Li, Di, and Ui matrices and is used as an input to a parallel prefix product
algorithm in order to determine Qi. Ci matrices are of size (2M + 1) × (2M + 1), and are of the form

Ci =

C
11
i C12

i 0
I 0 0
0 0 1

 . (10)

Therefore, Ci can be compressed into a smaller matrix, given by

C′i =
[
C11

i C12
i

]
. (11)

A C′i matrix can now be stored in a single cell of a concatenated register like R01.

4.1.2 Qi matrix compression

A Q-type matrix is a matrix produced by the product of several Ci matrices. They are of of size
(2M + 1) × (2M + 1), and are of the form

Q =

Q
11 Q12 0

Q21 Q22 0
0 0 1

 . (12)

Therefore, a Qi matrix is a Q-type matrix.

These matrices are isomorphic over matrix multiplication to smaller 2M × 2M matrices, which are
constructed as

Q′ =

[
Q11 Q12

Q21 Q22

]
. (13)

Theorem 5. If QA is a Q-type matrix, and C is a Ci matrix, then QB = CQA is such that the second block
row of the Q′ representation of QB is equal to the first block row of the Q′ representation of QA.

xi

Proof.

QB = CQA.

Multiplying on the left on both sides of the above equation with
[
0 I 0

]
, we get

[
0 I 0

] Q
11
B Q12

B 0
Q21

B Q22
B 0

0 0 1

 =
[
0 I 0

] C
11 C12 0
I 0 0
0 0 1

Q

11
A Q12

A 0
Q21

A Q22
A 0

0 0 1

[
Q21

B Q22
B 0

]
=

[
I 0 0

] Q
11
A Q12

A 0
Q21

A Q22
A 0

0 0 1

[
Q21

B Q22
B 0

]
=

[
Q11

A Q12
A 0

]
.

From the definition of Q′i in Equation (13) and the above result, we get

Q′B =

[
Q11

B Q12
B

Q21
B Q22

B

]
=

[
Q11

B Q12
B

Q11
A Q12

A

]
Q′i =

[
Q11

A Q12
A

Q21
A Q22

A

]
.

We observe that the second block row of Q′B is the first block row of Q′A. �

This means that if Q′1,Q
′
2, . . . ,Q

′
k were the Q′ representations of prefix product of some ordered collection

of Ci matrices, the second block row of Q′m would be equal to the first block row of Q′m−1 if i > 1, and
would be equal to the first block row of the identity matrix

[
I 0

]
if i = 0.

This further means that when a Q′ is calculated as a result of a prefix operation, and stored among adjacent
prefixes, we can further compress the Q′ matrix into a Q′′ matrix given by

Q′′ =
[
Q11 Q12

]
.

In this case, since we only have to calculate the first block row, the time complexity of this multiplication is
only TC′×Q′ = TQ′′×Q′ = 4CmulM3 instead of 8CmulM3.

However, when a Q′ is calculated by multiplying two other Q′’s and not stored among adjacent prefixes,
we need to calculate and store the full Q′ result. The time complexity of this operation is therefore
TQ′×Q′ = 8CmulM3.

For every block row 1 ≤ i ≤ N, we define the Q′′ representation of Qi as Q′′i .

4.1.3 Q−1 compression

Because of the isomorphism, we know that even Q−1
i matrices are representable as Q′ matrices, which are

two block-rows wide.

xii

As described in [2], only the first block column of the inverse of a Q−1
i is used. Therefore, we can omit

storing and calculating other block columns of the matrix.

Since the Q′ representation of Qi (represented by Q′i) are block matrices, we can use the following property
of block matrices

Q′i =

[
Q11 Q12

Q21 Q22

]
=

[
A B
C D

]
then Q−1 =

[
A−1(I + B(D −CA−1B)−1CA−1) −A−1B(D −CA−1B)
−(D −CA−1B)−1CA−1 (D −CA−1B)−1

]
. (14)

Assuming that A and D −CA−1B are invertible. This occurs when Q11
i and Q22

i − Q21
i (Q11

i)−1Q12
i are

invertible.

We define V = D −CA−1B and W = BV−1CA−1 for brevity.

We therefore can calculate only the first block column of Q−1
i like so:

Q−1
i =

[
A−1(I + W)
−V−1CA−1

]
. (15)

However, this optimization requires the following assumption to be made:
Assumption 4. For 1 ≤ i ≤ N,

4.2 Optimization in the Dependent Phase

4.2.1 Evaluating xi

Theorem 6. For 1 ≤ i ≤ N,

xi = Q′′i−1

[
x0 + Z13

i
Z23

i

]

Proof. From Theorem 1, we have

Xi+1 = S iXixi+1
xi

1

 = (Qi + Ei)X1 = (Qi + QiZi−1 + Fi)X1 = (Qi(I + Zi−1) + Fi)X1

= Qi(I + Zi−1)X1 + FiX1

=

Q
11
i Q12

i 0
Q21

i Q22
i 0

0 0 1

x0

0
1

 +

Z
13
i

Z23
i
0

 +

F
13
i
0
0

 .

xiii

Multiplying both sides of the above equation with
[
0 1 0

]
on the left, we get

[
0 1 0

] xi+1
xi

1

 =
[
0 1 0

]
Q

11
i Q12

i 0
Q21

i Q22
i 0

0 0 1

x0

0
1

 +

Z
13
i

Z23
i
0

 +

F
13
i
0
0

xi =
[
Q21

i Q22
i 0

]
x0

0
1

 +

Z
13
i

Z23
i
0

 + 0

=
[
Q21

i Q22
i

] ([x0
0

]
+

[
Z13

i
Z23

i

])
= Q′′i−1

[
x0 + Z13

i
Z23

i

]
.

�

4.3 Shared-memory parallel prefix

A parallel prefix problem on an array X of length n over a binary, associative operator � is to determine an
array P of length n such that P[k] = X[0] � X[1] � X[2] � · · · � X[k].

This can be done in shared memory for q threads in the following method, known as the ‘hypercube’
method:

xiv

Algorithm 3: Naïve Shared-Memory Parallel Prefix

TT is an array of length q, the number of threads;
T P is an array of length q;
b← 1 is an integer;

/* Thread-local Prefix Phase */
for t ← 0 to q − 1 in parallel do

P[tst]← P[tst];
for i← tst + 1 to tet − 1 do

P[i]← P[i − 1] � X[i];
end
TT [t]← P[tet − 1];
T P[t]← P[tet − 1];

end

if q > 1 then
/* Cross-thread Prefix Phase */
while (1 � b) < q do

for t ← 0 to q − 1 in parallel do
i← t ∧ (1 � b);
if i < q then

if i < t then
TT [t]← TT [i] � TT [t];
T P[t]← T P[i] � TT [t];

else
TT [t]← TT [t] � TT [i];

end
end

end
b← b + 1;

end

/* Thread-local Update Phase */
for t ← 1 to q − 1 in parallel do

for i← tst to tet − 1 do
P[i]← T P[t − 1] � P[i]

end
end

end

Therefore, where T� is the time complexity of the implementation of the � operator, and MX is the number
of block cells in each element of X, the time complexity of Algorithm 3 is

Tnpp(n, q) =

2
(

n
q + log2(q)

)
T� + 2Ccopy(qMX) q > 1

nT� + 2Ccopy(MX) q = 1
. (16)

xv

The memory complexity of Algorithm 3 is

Mnpp(n, q) = 2CcellMX(n + q). (17)

At every stage, the values in TT are available somewhere in T P, so we can preclude TT entirely by
modifying the Cross-thread Prefix Phase.

Algorithm 4: Better Shared-memory Parallel Prefix

T P is an array of length q;
/* Thread-local Prefix Phase as in Algorithm 3 without copying to TT */
. . . ;

/* Better Cross-thread Prefix Phase */
for t ← 0 to b q

2c in parallel do
n← 1 � 0 is a two’s complement signed integer;
while n < q do
/* ∼ is bitwise complement and & is bitwise AND */
/* − is two’s complement negation */
target ← ((t & (−n)) � 1) + n + (t & ∼ (−n));
if target < q then

source← (t & (−n)) − 1;
/* For an illustration on the source-target pairings, see Figures 1
and 2 */

T P[target]← T P[source] � T P[target];
end
n← n � 1;
barrier;

end
end
/* Thread-local Update Phase as in Algorithm 3 */

Since this algorithm eliminates the need to copy values to TT , this reduces the time complexity to

Tbpp(n, q) =

(
2 n

q + log2(q)
)

T� + Ccopy(qMX) q > 1

nT� + CcopyMX q = 1
. (18)

Since the array TT is eliminated, the memory complexity is reduced to

Mbpp(n, q) = CcellMX(2n + q). (19)

4.3.1 Optimizations for in-place prefix operations

The prefix scan in the Right-hand side Dependent Phase is a prefix sum of the last column of Q−1
i Fi for all

i, in order to determine Z′i . In this case, X is the array of the last columns of all Q−1
i Fi, and the operation �

is vector addition. Vector addition can be performed in place.

However, the specific requirements of the Right-hand Side Dependent Phase of the Accelerated Recursive
Doubling Algorithm causes Algorithm 3 to have the following drawbacks:

xvi

Figure 1. In-place Shared-Memory Parallel Prefix

Calculating the prefix sum of the first 24 natural numbers using 8 threads using in-place addition

1. The parallel prefix algorithms in ARDA do not require X to be preserved, while the algorithm
preserves X and P.

2. The algorithm does not take advantage of the fact that the operation � is in-place.

These drawbacks can be mitigated by modifying Algorithm 3 as shown in Figure 1 for in-place operations.
Figure 1 shows the parallel prefix algorithm for in-place addition on the first 24 natural numbers. The
following modifications can be made:

Algorithm 5: Modified Parallel Prefix Algorithm for in-place operations
1. The prefix is calculated in-place, clobbering the original values of X. This saves the memory

required for P.
2. The algorithm removes the need for T P by using X[tet − 1] to store the value that would

otherwise be stored in T P[t].

xvii

Since this modification eliminates the need to copy values to T P, this reduces the time complexity further to

Tipp(n, q) =

(
2 n

q + log2(q)
)

T� q > 1

nT� q = 1
. (20)

Since the arrays P and T P is eliminated, the memory complexity is reduced to

Mipp(n, q) = nCcellMX . (21)

Note on threads: The number of concurrent threads running during the Cross-thread Prefix Phase is
reduced to b q

2c. This means that thread synchronization is faster, and more memory bandwidth is available
to the prefix operations.

The number of threads performing during the Thread-local Update Phase is reduced to q − 1. Since the
local total available at X[teq−1 − 1], the q-th thread can be assigned to performing the cross-rank parallel
prefix operation, providing for some computation-communication overlap.

4.3.2 Optimizations for out-of-place prefix operations

The prefix scan in the Right-hand side Independent Phase is a prefix product of C′i over all i to determine
Q′′i . In this case, X is the array of C′i , and the operation � is matrix multiplication. Matrix multiplication, as
implemented in BLAS _gemm routines, is performed out of place, unlike vector addition.

To make the algorithm behave like as the operation was in place, we could store the result of the matrix
multiplication in auxiliary memory and then copy the result, but one copy per operation can be expensive
as the size of the matrix increases.

Also, we cannot use X as a substitute for T P as in the case of the out-of-place prefix operations. The
cross-thread prefix phase requires multiplying Q′-type (single-prime) matrices, which are inferred from
Q′′-type (double-prime) or C′-type stored in X.

However, we have two thread registers that can store q matrices of type Q′, and we can use both R01 and
R34 to store Q′′ type registers. Therefore, we can make the following modifications to the algorithm,
illustrated in Figure 2 and described below.

Algorithm 6: Modified Parallel Prefix Algorithm for out-of-place operations
1. Every cell in the array X and T P has two sections, each with an associated color: white and black.

All X[i] are currently in a white section, and the black sections are all empty.
2. Whenever X[i] or T P[i] is used as an operand, the value in the white section is used.
3. Whenever X[i] or T P[i] is written to, the value is stored in the black section. Then, the colors of the

sections of that cell are flipped.
4. If q = 1, the colors of the every section are flipped once after the Thread-local Prefix Phase.

The copy between X and T P in Figure 2 can be eliminated by referring to X[tet − 1] for the value at T P[t]
until T P[t] is written to.

The time complexity of the algorithm is therefore:

Toopp(n, q) =

(
2 n

q + log2(q)
)

T� q > 1

nT� q = 1
. (22)

xviii

Figure 2. Out-of-place Shared-Memory Parallel Prefix

Calculating the prefix sum of the first 12 natural numbers using 4 threads using out-of-place addition

xix

The memory complexity is

Moopp = 2CcellMX(n + q). (23)

Note on threads: Like in the in-place case, the number of concurrent threads running during the
Cross-thread Prefix Phase is reduced to b q

2c. However, the number of threads performing during the
Thread-local Update Phase remains q. But, as in Figure 2, Thread 0 is expected to finish early since
copying is faster than performing operations like matrix multiplications. Thread 0 can then perform the
cross-rank parallel prefix for some computation-communication overlap.

5. Program

5.1 Independent Phase Part 1

In the first part of the Independent Phase, we have received Li, Di, and Ui, and we calculate C′i . For any
given k, the calculation of C′k only relies on Lk, Dk, and Uk. Therefore, we can complete this part using an
embarrassingly parallel algorithm as shown in Algorithm 9.

Algorithm 7: Independent Phase Part 1

for t ← 0 to q − 1 in parallel do
for k ← tst to tet − 1 do

Execute each instruction in Table 1;
end

end

Table 1. Instructions for Independent Phase Part 1

Instruction R0
k R1

k R2
k R3

k R4
k Rt0

k Complexity

— Li Di Ui — — — —

R2
k ← inv(R

2
k ,R

t0
t) Li Di U−1

i — — — CinvM3

R34
k [0]← −R2

kR1
k Li Di U−1

i

(
C11

i ,—
)

— CmulM3

R34
k [1]← −R2

kR0
k Li Di U−1

i

(
C11

i ,C
12
i

)
= C′i — CmulM3

The time complexity of first part of the independent phase is

Tip1(M,N, P, q) =
N
Pq

(
M3(Cinv + 2Cmul)

)
. (24)

xx

5.2 Independent Phase Part 2

In the second part of the Independent Phase, we have C′i , and we must calculate Q′′i . This can be done
efficiently using a parallel prefix scan. The prefix scan has the following parts:

1. Compute the shared-memory prefix product of all C′i on a given processing element to obtain ‘local’
Q′′i .

2. Compute the distributed-memory prefix product of the ‘local’ Q′i’s that represent the local total.

3. Update the ‘local’ Q′′i using the result of the previous step to get Q′′i .

Step 1 is implemented using Algorithm 6. The sections of X[i] are R34[i] and R01[i] with the R34 section
initially colored white. The sections of T P[i] are Rt0[i] and Rt1[i] with the Rt0 section initially colored
white.

For the particular application of calculating the prefix sum of Ci matrices, we can further optimize the
storage and computation time for the parallel prefix algorithm. In the Thread-local Prefix and the
Thread-local Update stages, the resultant matrices are products of collections of Ci matrices. This means
we can omit calculating the second block rows of the resultant matrices, and infer the second block rows
from previous matrices. This means that the cost of the prefix operation is not uniform over the prefix
operation.

This means Equation (22) cannot be used to express the time complexity of this step. The time complexity
can be calculated to be:

Tip21(M,N, P, q) = TC′×Q′′(M)
N
Pq

+

TQ′×Q′(M) log2(q) + TQ′′×Q′(M) N
Pq q > 1

0 q = 1

= M3Cmul

8 N
pq + 8 log2(q) q > 1

4 N
q q = 1

. (25)

Step 2 is implemented using a distributed-memory library function like MPI_Exscan using a simulated
in-place matrix multiplication operator, which first multiplies two matrix into some auxiliary storage (Rt0

0)
and copies the result into the memory held by an operand. The result is received in the receive register Rr.
The time complexity of this step is therefore:

Tip22(M,N, P, q) = (M3(8Cmul) + M2(4Ccopy)) log2(P) + (τ + 4µM2) log2(P). (26)

The 4M2Ccopy term can be eliminated by using a parallel prefix method optimized for out-of-place
operations like in Step 1. However, this was not done in this study because the convenience of using a
library function outweighed the potential gain by the complex optimization.

Step 3 can be written as an embarrassingly parallel algorithm as given in Algorithm 8.

Algorithm 8: Independent Phase Part 2 Step 3

for t ← 0 to q − 1 do
for k ← tst to tet − 1 do

R34
k ← R01

k Rr;
end

end

xxi

Therefore, the time complexity of this step

Tip23(M,N, P, q) = M3
(
4

N
Pq

Cmul

)
. (27)

The time complexity of the second part of the independent phase is

Tip(M,N, P, q) =M2(4Ccopy + 4µ) log2 P + τ log2 P+ (28)

M3

8Cmul log2 P +

 N
Pq (12Cmul) + 8Cmul log2 q q > 1
N
P (8Cmul) q = 1

 . (29)

5.3 Independent Phase Part 3

This phase can be implemented using an embarrasingly parallel algorithm as follows:

Algorithm 9: Independent Phase Part 1

for t ← 0 to q − 1 in parallel do
for k ← tst to tet − 1 do

Execute each instruction in Table 1;
end

end

In the following table, inv(RA,RB) is a function that inverts the matrix stored in RA, in place, using RB as
a workspace.

Table 2. Instructions for Independent Phase Part 3

Instruction R0
k R1

k Rt0
k Rt1

k Complexity

Rt0
t ← R34

K−k[0] — — A — CcopyM2

Rt0
t ← inv(R

t0
k ,R

t1
t) — — A−1 — CinvM3

R0
k ← R34

K−k+1[0]Rt0
t CA−1 — A−1 — CmulM3

Rt1
t ← R34

K−k+1[1] CA−1 — A−1 D CcopyM2

Rt1
t ← Rt1

t − R0
kR34

K−i[1] CA−1 — A−1 V CmulM3

Rt1
t ← inv(R

t1
t ,R

1
k) CA−1 — A−1 V−1 CinvM3

R1
k ← −Rt0

t R0
k CA−1 −V−1CA−1 A−1 V−1 CmulM3

Rt1
t ← −R34

K−k[1]R1
k CA−1 −V−1CA−1 A−1 W CmulM3

Rt1
t ← Rt1

t + I CA−1 −V−1CA−1 A−1 I + W CaddM

R0 ← Rt0
t Rt1

t A−1(I + W) −V−1CA−1 A−1 I + W CmulM3

xxii

The final results in R0
k and R1

k form the first column of the inverse of Qi, as described in the Optimizations
in the Independent Phase section.

The time complexity of the third part of the independent phase is

Tip3(M,N, P, q) = (M3(2Cinv + 5Cmul) + M2(2Ccopy) + M(Cadd))
N
Pq

. (30)

5.4 Dependent Phase Part 1

In the first part of the Dependent Phase, we have bi, U−1
i , and the first column of Q−1

i and we calculate zi.
For any given k, the calculation of zk only relies on bi, U−1

k , and the first column of Q−1
k . Therefore, we can

implement this part using an embarrassingly parallel algorithm as shown in Algorithm 10.

Algorithm 10: Dependent Phase Part 1

for t ← 0 to q − 1 in parallel do
for k ← tst to tet − 1 do

Execute each instruction in Table 3;
end

end

Table 3. Instructions for Dependent Phase Part 1

Instruction Rv0
k Rv1

k Rv2
k Complexity

— bi — — —

Rv2
k ← R2Rv0 bi — F13

i CmulM2

RZ
k [0]← R0

kRv2
k

(
(Q−1

i Fi)13,—
)

F13
i CmulM2

RZ
k [1]← R1

kRv2
k

(
(Q−1

i Fi)13, (Q−1
i Fi)23

)
= zi F13

i CmulM2

The time complexity of this part of the algorithm is

Tdp1(N,M, P, q) =
N
Pq

(M2(3Cmul)). (31)

5.5 Dependent Phase Part 2

In the second part of the Dependent Phase, we have zi, and we must calculate Z′i . This can be done using a
parallel prefix scan. The prefix scan has the following parts:

1. Compute the shared-memory prefix sum of all zi to obtain ‘local’ Zi.

2. Compute the distributed-memory prefix sum of the ‘local’ Zi’s that represent the local totals.

xxiii

3. Update the ‘local’ Zi using the result of the previous step to get Z′i .

4. On the processing element that has QN , calculate x1 = −(Q11
N)−1FN and broadcast it to all processing

elements.

Step 1 is implemented using Algorithm 5. The register RZ is represented by X.

Substituting T� = M(2Cadd), n = N
P in Equation (20), we get

Tdp21(M,N, P, q) =

M
(
2 N

Pq + log2(q)
)

(2Cadd) q > 1

M
(

N
P (2Cadd)

)
q = 1

. (32)

Step 2 is implemented using a distributed-memory library function like MPI_Exscan using a vector
addition operator, where the result is received in Rt0

v0. The time complexity of this step is therefore:

Tdp22(M,N, P, q) = M(2Cadd) log2(P) + (τ + 2µM) log2(P). (33)

Step 3 can be implemented as an embarrassingly parallel algorithm as given in Algorithm 11.

Algorithm 11: Dependent Phase Part 2 Step 3

for t ← 0 to q − 1 do
for k ← tst to tet − 1 do

RZ
k ← RZ

k + Rt0
v0;

end
end

Therefore, the time complexity of this step is

Tdp23(M,N, P, q) = M
(

N
Pq

Cadd

)
. (34)

Step 4 can be implemented as in Algorithm 12.

Algorithm 12: Dependent Phase Part 2 Step 4

if N is on current processing element then
Rt1[0]11 ← inv(R34[Kr − 1], Rt1[0]21);
Rt0

v1 ← −Rt1[0]11Rv2
Kr−1;

end
Broadcast Rt0

v1, receiving in Rt0
v1;

The time complexity of this step is

Tdp24(M,N, P, q) = CinvM3 + CmulM2 + (τ + µM) log2 P. (35)

The total time complexity of the second part of the dependent phase is therefore

Tdp(M,N, P, q) = τ log2(P) + M

2(Cadd + µ) log2(P) +

 N
Pq (5Cadd) + 2Cadd log2(q)) q > 1
N
P (3Cadd) q = 1

 . (36)

xxiv

5.6 Dependent Phase Part 3

In the third part of the Dependent Phase, we have Z′i , x1, and Q′′i , and we must calculate xi. For any given
k, the calculation of xk only relies on Z′k, x1, and Q′′k−1. Therefore, we can implement this part using an
embarrassingly parallel algorithm as shown in Algorithm 13.

Algorithm 13: Dependent Phase Part 3

for t ← 0 to q − 1 in parallel do
for k ← tst to tet − 1 do

Execute each instruction in Table 4;
end

end

Table 4. Instructions for Dependent Phase Part 3

Instruction RZ
k Rv2

k Complexity

— Z′i F13
i —

RZ
k ← RZ

k +

[
x1 0

]T
Z′i +

[
x1 0

]T
F13

i CaddM

Rv2
k ← Rv2

k + R34
K−i+1RZ

k−1 Z′i +

[
x1 0

]T
xi 2CmulM2

The time complexity of this part of the algorithm is

Tdp3(M,N, P, q) =
N
Pq

(
M2(2Cmul) + MCadd

)
. (37)

6. Time Complexity Analysis and Comparison

6.1 Naïve implementation

The naïve implementation is considered to use M ×M matrices to represent L,D and U matrices, 2M × 2M
matrices to represent C and Q matrices, while using 2M × 1 matrices to represent F and Z matrices.

To determine the time complexity of the dependent phase of the naïve implementation, we list the
time-complexities of the naïve implementations of each step, and then sum the complexities.

xxv

6.1.1 Independent phase

Step Complexity

Invert U’s N
P (CinvM3)

Calculate C’s using L,D, and U−1 N
P (2CmulM3)

Prefix C’s locally to find local Q’s N
P (8CmulM3)

Cross-rank prefix scan on Q (τ + 4µM2 + 8CmulM3) log2(P)

Update Q’s locally to find global Q’s N
P (8CmulM3)

Invert Q’s N
P (8CinvM3)

The total time complexity for the independent phase is

Tni(M,N, P) = M3
(N

P
(9Cinv + 18Cmul)) + 8Cmul log2(P)

)
+ Θ(M2 log2 P) (38)

6.1.2 Dependent Phase

Step Complexity

Calculate F’s N
P (CmulM2)

Calculate V’s N
P (2CmulM2)

Prefix V’s locally to find local Z’s N
P (2CaddM)

Cross-rank prefix scan on Z (τ + 2µM + 2CaddM) log2 P

Update Z’s locally to find global Z’s N
P (2CaddM)

Calculate E’s using Z, Q and F N
P (2CmulM2 + 2CaddM)

Calculate x1 CinvM3 + CmulM2

Broadcast x1 (τ + µM) log2 P

Calculate xi using x0, Q, and E N
P Cmul(4M2 + 2M)

The total time complexity for the dependent phase is

Tnd(M,N, P) = M3Cinv + M2
(N

P
(9Cmul) + Cmul

)
+ Θ

(MN
P

+ M log2 P
)

(39)

xxvi

6.2 Optimized implementation

6.2.1 Independent phase

Summing up the time complexities given in Equations (24), (29), and (30), we get:

Toi(M,N, P, q) =M3

8Cmul log2 P +
N
Pq

(3Cinv) +

 N
Pq 19Cmul + 8Cmul log2 q q > 1
N
P 15Cmul q = 1

 +

M2
(

N
Pq

(2Ccopy) + (4Ccopy + 4µ) log2 P
)

+ M
N
Pq

Cadd (40)

=M3

8Cmul log2 P +
N
Pq

(3Cinv) +

 N
Pq 19Cmul + 8Cmul log2 q q > 1
N
P 15Cmul q = 1

 +

Θ

(
M2N
Pq

+ M2 log2 P
)

. (41)

Setting q = 1, we get

Toi(M,N, P) = M3
(N

P
(15Cmul + 3Cinv) + 8Cmul log2 P

)
+ Θ

(
M2N

P
+ M2 log2 P

)
(42)

6.2.2 Dependent phase

Summing up the time complexities given in Equations (31), (36), and (31), we get:

Tod(M,N, P, q) =M3Cinv + M2
(

N
Pq

(5Cmul) + Cmul

)
+

2τ log2 P + M

(2Cadd + 3µ) log2 P + 2Cadd

3 N
Pq + log2 q q > 1

2 N
P q = 1

 (43)

=M3Cinv + M2
(

N
Pq

(5Cmul) + Cmul

)
+ Θ

(
MN
Pq

+ M log2 P + M log2 q
)

(44)

Setting q = 1, we get

Tod(M,N, P) = M3Cinv + M2
(N

P
(5Cmul) + Cmul

)
+ Θ

(MN
P

+ M log2 P
)

(45)

6.3 Comparison

In order to compare the two algorithms, we assume that the number of shared-memory threads is q = 1,
and Cinv = Cmul = C. For the two problem parameters M and N, we choose the dominantly growing term
that grows along with that parameter.

We then measure the asymptotic speedup defined as the limit

lim
parameter→∞

Dominant term of the naïve implementation
Dominant term of the optimized implementation

. (46)

xxvii

6.3.1 Independent Phase

Parameter Dominant term (Optimized) Dominant term (Naïve) Asymptotic Speedup

M 18CM3 N
P + 8CM3 log2 P 27CM3 N

P + 8CM3 log2 P 27N+8P log2 P
18N+8P log2 P = 3

2 (N >> P)

N 18CM3 N
P 27CM3 N

P
3
2

6.3.2 Dependent Phase

Parameter Dominant term (Optimized) Dominant term (Naïve) Asymptotic Speedup

M CM3 CM3 1

N 5CM2 N
P 9CM2 N

p
9
5

7. Memory Complexity Analysis and Comparison

7.1 Naïve implementation

The memory complexity of the naïve implementation was estimated by summing up the sizes of the
allocations relevant to the phase of the algorithm over all processing elements in the implementation of the
ARDA algorithm used in [2].

For the independent phase, the memory complexity was found to be Mni(M,N, P) ≥ (14M2N + 8M2P)Ccell.
For the dependent phase, the memory complexity was found to be Mnd(M,N, P) ≥ (6MN + 4MP)Ccell.

7.2 Optimized implementation

The memory complexity of the optimized implementation can be measured simply by summing up the
sizes of the registers relevant to the phase of the algorithm.

For the independent phase, the memory complexity was found to be
Moi(M,N, P, q) = (5M2N + 8M2Pq + 4M2P)Ccell. For the dependent phase, the memory complexity was
found to be Mod(M,N, P, q) = (3MN + 3MPq)Ccell.

7.3 Comparison

In order to compare the two algorithms, we assume that the number of shared-memory threads is q = 1.
For the two problem parameters M,N, we choose the dominantly growing term that grows along with that
parameter.

xxviii

We then measure the asymptotic memory savings defined as the limit

lim
parameter→∞

Dominant term of the optimized implementation
Dominant term of the naïve implementation

. (47)

7.3.1 Independent Phase

Parameter Dominant term (Optimized) Dominant term (Naïve) Asymptotic Memory Savings

M M2(5N + 12P) M2(14N + 8P) 5N+12P
14N+8P = 5

14 (N >> P)

N N(5M2) N(14M2) 5
14

7.3.2 Dependent Phase

Parameter Dominant term (Optimized) Dominant term (Naïve) Asymptotic Memory Savings

M M(3N + 3P) M(6N + 4P) 3
N
P +1

6 N
P +4

N N(3N) N(6M) 1
2

8. Shared-memory threading speedups

We determine the effect of adding shared-memory threading to the asymptotic time-complexity of the
Algorithm.

8.1 Independent phase

The asymptotic time complexity of the independent phase is

Toi(M,N, P, q) = Θ

(
M3N
Pq

+ M3 log2(Pq)
)

. (48)

Therefore, the asymptotic speedup with increasing q is

Speedup =
Complexity for num threads = 1
Complexity for num threads = q

= Θ

 M3N
P + M3 log2(P)

M3N
Pq + M3 log2(Pq)

= Θ

q
(

N
P + log2(P)

)
N
P + q log2(Pq)

 .

xxix

For small block-row granularities N
P , we can plug in N

P ≈ 0 in the above equation to obtain an asymptotic

speedup of Θ(1). For large block-row granularities, we can plug in
N
P +log2 P

N
P

≈
N
P +q log2(Pq)

N
P

≈ 1 to obtain an
asymptotic speedup of Θ(q).

8.2 Dependent phase

The asymptotic time complexity of the dependent phase is

Tod(M,N, P, q) = Θ

(
M3 +

M2N
Pq

+ M log2(Pq)
)

. (49)

Therefore, the asymptotic speedup with increasing q is

Speedup =
Complexity for num threads = 1
Complexity for num threads = q

= Θ

 M3 + M2N
P + M log2 P

M3 + M2N
Pq + M log2(Pq)

= Θ

 q
(

MN
P + M2 + log2 P

)
MN
P + q(M2 + log2(Pq))

 .

For small block-cell granularities MN
P , we can plug in MN

P ≈ 0 in the above equation to obtain an
asymptotic speedup of Θ(1). For large block-cell granularities, we can plug in
MN
P +M2+log2 P

MN
P

≈
MN
P +q(M2+log2(Pq))

MN
P

≈ 1 to obtain an asymptotic speedup of Θ(q).

9. Experiments and Results

The optimized algorithm described was implemented in C, using BLAS and LAPACK calls for matrix and
vector operations. The solutions generated by the algorithm were measured for accuracy by the error
function E(x) = log2

||Ax∗−b||
MN where x∗ is the solution given by the algorithm. The smaller the value of

E(x∗), the more accurate the solution is.

The results were as follows:

Table 5. Mean error for M = 2,N = 20

P Mean E(x)
6 −22.177
8 −24.389
10 −21.317
12 −21.318

Table 6. Mean error for M = 3,N = 9

P Mean E(x)
6 −21.518
8 −22.116
10 −21.232
12 −25.232

The optimized implementation works correctly, with the magnitude of the error = 2E(x8) ≤ 10−7 for the
above problem sizes.

xxx

However, for larger problem sizes, we get

Table 7. Mean error for M = 3,N = 22

P Mean E(x)
6 9.020
8 9.740
10 9.740
12 9.087

The error continues to rise rapidly with increases in M and N, and E(x) approaches 225 for N = 20,
M = 80. The rapidly increasing error poses a significant challenge to the practical use of this algorithm.
The possible causes have been identified as

1. The blockwise inverting algorithm used in Optimization 2 to efficiently calculate only the first block
column

2. The limited precision to which we can store large numbers resulting from prefix products of large
numbers of matrices.

New techniques need to be developed to keep the error within practical limits.

10. Conclusions

We presented alternative mathematical formulations of intermediary matrices in the algorithm. We also
made the assumptions made by the algorithm explicit. This helped us determine that a particular algorithm
cited in [2] will not run.

We have shown methods by which the Accelerated Recursive Doubling Algorithm can be optimized, and
shown how the speedup and memory savings is affected by the value of the problem parameters M,N and
the new parameter q. We can achieve up to 3

2 speedup on the independent phase and up to 9
5 speedup on the

dependent phase. Since the dependent phase is expected to run 102–104 times, the overall speedup is close
to 9

5 .

We implemented the optimized algorithm and verified that runs with acceptable errors for small matrices.
We also noted the numerical instability of the algorithm. Resolving this numerical stability is the direction
of our research into this algorithm.

References

[1] S. K. Seal, K. P. Perumalla, and S. P. Hirshman, “Revisiting Parallel Cyclic Reduction and Parallel
Prefix-based Algorithms for Block Tridiagonal Systems of Equations,” Journal of Parallel and
Distributed Computing, vol. 73, pp. 273–280, 2013.

[2] S. K. Seal, “An accelerated recursive doubling algorithm for block tridiagonal systems,” in 2014 IEEE
28th International Parallel and Distributed Processing Symposium, 2014, pp. 1019–1028.

xxxi

	LIST OF FIGURES
	Introduction
	Li, Di, and Ui matrices
	xi and bi vectors
	Xi vectors and Bi matrices
	Si matrices
	Ci and Fi matrices
	Qi matrices
	Ei matrices
	Zi matrices

	Original Algorithm
	Independent phase
	Dependent phase

	Algorithm Setup
	Block row assignment and indexing
	Shared-memory threading
	Registers and Instructions

	Optimizations
	Optimizations in the Independent Phase
	Ci matrix compression
	Qi matrix compression
	Q-1 compression

	Optimization in the Dependent Phase
	Evaluating xi

	Shared-memory parallel prefix
	Optimizations for in-place prefix operations
	Optimizations for out-of-place prefix operations

	Program
	Independent Phase Part 1
	Independent Phase Part 2
	Independent Phase Part 3
	Dependent Phase Part 1
	Dependent Phase Part 2
	Dependent Phase Part 3

	Time Complexity Analysis and Comparison
	Naïve implementation
	Independent phase
	Dependent Phase

	Optimized implementation
	Independent phase
	Dependent phase

	Comparison
	Independent Phase
	Dependent Phase

	Memory Complexity Analysis and Comparison
	Naïve implementation
	Optimized implementation
	Comparison
	Independent Phase
	Dependent Phase

	Shared-memory threading speedups
	Independent phase
	Dependent phase

	Experiments and Results
	Conclusions

